

Research Article 2

shortest common superstring problem. Simulated annealing
speci�cally goes about this in a manner similar to that of the
hill climbing algorithm. First, the algorithm picks a random
starting point. Next, it looks at a neighbor of that point. If the
neighbor results in a shorter superstring than the current point,
the neighbor will become the current point, and the algorithm
will continue neighbor to neighbor, improving as it goes along.
The issue with the hill climbing algorithm is its tendency to get
stuck in local optima (Figure 1).

Fig. 1. The hill climbing algorithm gets stuck in local optima.

Because the algorithm only moves to a neighboring point
if it is better than the current point, it has no way to escape a
locally optimal solution. Simulated annealing improves upon
this model by adding a probability of accepting a worse solution.
This allows the simulated annealing algorithm to escape from
local optima. At the start, there is a high probability of accepting
a bad solution, meaning the algorithm can easily escape locally
optimal solutions. As time goes on, however, the probability of
accepting a worse solution decreases, allowing the algorithm to
“lock in” on the globally optimal solution.

The second algorithm tested is a genetic algorithm. Genetic
algorithms, like simulated annealing, are stochastic global op-
timization algorithms. Genetic algorithms work by mimicking
the process of evolution, gradually selecting for the best solu-
tion. The genetic algorithm begins with a random population of
individuals. From here, the probability that each individual will
pass on their genetic material is determined based on �tness –
the �tter the individual, the more likely it will pass on its genetic
material to the next generation. Over time, the �tter individuals
begin exchanging genetic material, resulting in better and bet-
ter results as time goes on. Genetic variance is also introduced
through random mutations, which allows genetic algorithms to
escape from local optima as well.

Due to the non-deterministic nature of the two algorithms
tested, running each algorithm multiple times yields different
results. Therefore, parallel versions of both algorithms were also
tested, with multiple versions of the algorithm running simul-

taneously. This provides a large advantage to the genetic algo-
rithm especially because the different instances can exchange
information: if one instance �nds a particularly promising so-
lution, it can pass that information along so the other instances
can use it as a starting point.

Stochastic global optimization algorithms were chosen for
their inherent parallelization and for the lack of research on
their applications to the shortest common superstring problem.
Because both algorithms have outperformed greedy algorithms
in other problems [7] [8], it was of particular interest whether or
not they would be able to do the same for the shortest common
superstring problem.

2. MATERIALS AND METHODS

A. Materials

The entirety of the research was conducted on an HP envy
Touchsmart 15 laptop with an Intel i7-4700mq processor and
8 GB of DDR3 RAM. The program was coded for in the Python
2.7 programming language, and was compiled by the 64 bit
PyPy compiler for Python 2.7 on Windows 10. Code was written
using the Vim text editor running on the Linux Mint 15 oper-
ating system. The code is attached in appendix A; the entirety
of the code is present, and every line was written solely by the
author of the paper.

B. Greedy Algorithm

For the purposes of running as a benchmark to test the other
algorithms against, a greedy algorithm was implemented. The
greedy algorithm was implemented based on that presented in
[9]; the implementation was designed to best re�ect the standard
greedy algorithm that appears in the literature. In short, the
greedy algorithm operates by �nding the two strings in the
list with the largest overlap. The algorithm then merges those
strings into one string, and repeats the process until only one
string remains (see Introduction for a more formal description).
A pseudocode outline is found in algorithm 1.

Algorithm 1. Greedy Algorithm

1: procedure GREEDY(strings)
2: while length(strings) > 1 do . Stop when only one

string is left
3: for i 0,length(strings) do
4: for j 0,length(strings) do
5: if strings[i] 6= strings[j] then
6: if overlap(strings[i], strings[j]) < record

then . Find the largest overlap between any two strings
7: record overlap(strings[i], strings[j])
8: f irst i
9: second j

10: strings.remove(f irst)
11: strings.remove(second)
12: strings.add(record)
13: return strings[0]

C. Simulated Annealing

The simulated annealing algorithm operates by taking a directed
random walk through all the possible solutions to the input.
The �rst iteration begins by creating a random ordering of the
input strings. The �tness of each random ordering, a measure

Research Article 3

of how desirable that particular random solution is, is then
determined by calculating the length of the superstring created
by overlapping all adjacent strings. From this �tness measure,
it can be determined which random ordering is preferable; for
example, consider the following strings:

0 1 2

abba baaaa bbbabba

Two different strings orderings, such as f 0, 1, 2g and f 2, 0, 1g,
yield different length strings:

f 0, 1, 2g f 2, 0, 1g

abba+baaaa+bbbabba bbbabb+abba+baaaa

abbaaaabbbabba bbbabbabaaaa

length: 14 length: 12

If the �tness of the current iteration is better than the �tness
of the previous iteration, the current ordering is a better solution
and it is thus saved as the value to beat (herein referred to as
the “saved value”). If the �tness of the current iteration is worse
than the �tness of the previous iteration, there is a probability
that it will still be chosen as the saved value. This probability is
based on two factors.

First, the difference in the �tnesses – this makes it much less
likely that a large setback is incurred. Second, the amount of
time that the algorithm has been running – this means bigger
risks will be taken when the algorithm �rst starts, but near the
end the algorithm will “zero in” on the best solution instead
of jumping around randomly to worse solutions. The rationale
behind sometimes choosing a worse solution is the genius of
the simulated annealing algorithm – by choosing a worse value
in the short term, the long term bene�t is the ability to escape
local optima (see introduction). Finally, a neighbor of the saved
value is selected randomly, and the same process is repeated.
A neighbor is determined by randomly swapping two adjacent
strings in the saved value: by making such a relatively small
change, good solutions are conserved because merely swapping
two adjacent strings is a minute change that is unlikely to neg-
atively impact the solution too much. The process of selecting
a neighbor of the saved value, changing the saved value if a
better result is found, and repeating continues until a certain
number of iterations is reached, at which point the algorithm
returns the saved value as its solution. The pseudocode of the
implementation is outlined in algorithm 2.

Algorithm 2. Simulated Annealing

1: procedure SA(strings, tmax, tmin, s)
2: t tmax
3: l rand(0, 1) . random function non-inclusive
4: saved_strings rand_perm(strings) . gets a random

permutation of the string indices
5: while t � t

Research Article 4

selection is the simplest. Selection simply means the current
individual is replicated in its entirety. The advantage of selection
is that very good solutions get conserved. If a solution is partic-
ularly good, it makes since that it should be copied into the next
generation. However, the drawback of selection is that in and
of itself it does not allow for diversity. The selection operation
doesn't change anything; nothing is allowed to improve, which
undermines the purpose of evolution.

Research Article 5

3. RESULTS

The data were collected by compiling the attached code with
the PyPy 64-bit compiler for Python 2.7. Tests were run on
the Windows 10 operating system (see materials for machine
speci�cations). For both simulated annealing and the genetic
algorithm, two different tests were run. The �rst test used a
sample size of 10 randomly generated strings, each of a random
length between 10 and 20, and the second used a sample size of
20 randomly generated strings, also of a random length between
10 and 20 [15]. Each sample size was tested over 5 trials, and the
results of those trials were averaged.

Results are reported in terms of relative performance to the
greedy algorithm benchmark. For example, a score of 5% means
the tested algorithm produced a result 5% shorter than the
greedy algorithm.

Table 1. Genetic Algorithm Length Data (Average)

Strings Greedy Genetic Genetic Improvement

10 107 101 5.698%

20 207 198 4.4%

The data for the genetic algorithm demonstrate a 4.782%
improvement over the greedy algorithm, with the genetic algo-
rithm generating a shorter, or better, superstring in every trial.
This can be broken down into the results for 10 strings and 20
strings: when run on 20 strings, the improvement was 4.4%, and
when run on 10 strings the improvement was 5.698% (Table 1).

Table 2. Simulated Annealing Length Data (Average)

Strings Greedy SA SA Improvement

10 110 113 -11.82%

20 212 236 -2.95%

The data for the simulated annealing algorithm demonstrate
a -7.38% improvement over the greedy algorithm, with the sim-
ulated annealing algorithm generating a longer, or worse, su-
perstring in every trial. As with the genetic algorithm, this can
be broken into 10 string and 20 string results: the 20 string data
set showed a -11.82% improvement, and the 10 string data set
demonstrated a -2.95% improvement over the greedy algorithm
(Table 2).

Table 3. Timing Data (Average)

Strings Greedy(ms) Genetic(ms) SA(ms)

10 597 10439 3715

20 1133 23995 23768

Both the genetic algorithm and the simulated annealing al-
gorithm took far longer to run than the greedy algorithm. On
average, the genetic algorithm took 28.2 times as long to run,
and the simulated annealing algorithm took 24.7 times as long
to run (Table 3).

4. DISCUSSION

Much of the work conducted was aimed at improving the results
of the genetic algorithm. As a result, the algorithm underwent a
variety of iterations, but the majority of the improvements can
be separated into three distinct versions.

In the �rst version, the initial population was randomly gen-
erated from a solution space that includes all strings of a viable
length, even strings that are not valid superstrings. Since the
actual input strings tested were in binary, each individual was
simply a random binary number. This solution was based off
of the common method outlined in the literature [16]. However,
the obvious issue with this representation scheme is that only a
small minority of all strings are valid superstrings for a given
data set; by including all strings, the solution space increased
substantially. Additionally, the crossover and mutation genetic
operations introduced the possibility of yielding an invalid su-
perstring.

The second version �xed the representation issue by gen-
erating a random ordering of the input strings rather than an
entirely random string. The rationale behind this decision is that
every superstring can be represented as some ordering of the in-
put strings that are overlapped. This is the same representation
scheme used in the simulated annealing algorithm (see Materials
and Methods, subsection C). Although this new version takes
longer to run because it has to overlap all of the input strings
in order to �nd the superstring, it is much preferable because
it generates valid superstrings. Additionally, this version �xed
the crossover and mutation genetic operations. Both operations
were modi�ed to ensure that each new string ordering has one
and only one copy of each string: crossover gets re-run if any
duplicates are found, and mutation is a localized shuf�e (see
Materials and Methods, subsection D). This version improved
substantially on the �rst version, but it was still imperfect – it
generated results comparable to the greedy algorithm, but rarely
produced shorter strings.

The third and �nal version �xed this issue by seeding the
genetic algorithm with the greedy algorithm. This means that
instead of starting with a random ordering of strings, the genetic
algorithm starts with the ordering of strings generated by the
greedy algorithm. In other words, the result from the greedy
algorithm is “fed in” to the genetic algorithm for further im-
provement. The rationale behind this is that there is no reason
for the genetic algorithm to start from scratch if it can instead
start with the results of the greedy algorithm. The genetic algo-
rithm, then, functions as a heuristic optimization to the greedy
algorithm – the advantage of this is that if in the future someone
comes up with a major improvement to the greedy algorithm,
the genetic algorithm will improve as well.

The �nal version of the genetic algorithm, ran in parallel,
ended up, on average, outperforming the greedy algorithm, gen-
erating superstrings 4.782% shorter than the greedy algorithm.
The simulated annealing algorithm, on the other hand, gener-
ated superstrings 7% longer than the greedy algorithm. As such,
the genetic algorithm is considered a viable alternative to the
greedy algorithm, but the simulated annealing algorithm is not.

Additionally, the genetic algorithm incurred better perfor-
mance with smaller data sets. The average improvement for the

Research Article 6

greedy algorithm in implementation. This is primarily due to
the long time required to run the genetic algorithm; it took, on
average, 28.2 times as long to run as did the greedy algorithm.
Additionally, even though the genetic algorithm outperformed
the greedy algorithm in every case tested, the stochastic nature
of the algorithm means that it is possible, if not likely, that the ge-
netic algorithm could generate a solution worse than the greedy
algorithm. The deterministic nature of the greedy algorithm
makes it predictable – that kind of stability is often desired in
real-world applications like data compression.

Even though the genetic algorithm will not likely replace
the greedy algorithm in practice, this research has generated
many improvements that are of interest to future research. First
of all, the design of the genetic algorithm offers a few unique
approaches not found elsewhere in the literature. Speci�cally,
the data representation scheme (using string orderings instead
of directly generating random binary strings), and the genetic
operations (using a localized shuf�e method for mutation to
preserve the superstring property of the data and using a “safe”
two-point crossover that also preserves the superstring property)
can be implemented in future genetic and evolutionary solutions
to the shortest common superstring problem and other related
problems. Additionally, parallelism can help to overcome the
large time requirement of the genetic algorithm. This research
was conducted on a processor with 8 logical cores; by using more
parallelized hardware, for example graphics cards, the genetic
algorithm can be reduced down to similar times as the greedy
algorithm.

The goal of this research was to develop an algorithm that
could either produce a shorter superstring than the greedy al-
gorithm or produce the same length superstring as the greedy
algorithm in less time. In the end, the most important aspect
of the research was the genetic algorithm. Various modi�ca-
tions were made that make the genetic algorithm feasible for
solving the shortest common superstring problem. The genetic
algorithm did generate a shorter superstring than the greedy
algorithm on average, making it a success. If the time can be
reduced, it is possible that the modi�cations and improvements

	Introduction
	Materials and Methods
	Materials
	Greedy Algorithm
	Simulated Annealing
	Genetic Algorithm

	Results
	Discussion

